Sphone (EntityTopic, 11)

From Higher Dimensions Database


A sphone is a special case of a pyramid where the base is a sphere.

Equations

  • Variables:
r ⇒ radius of base of sphone
h ⇒ height of sphone
  • All points (x, y, z, w) that lie on the surcell of a sphone will satisfy the following equations:
Unknown
  • All points (x, y, z) that lie on the faces of a sphone will satisfy the following equations:
x2 + y2 + z2 = r2
w = 0
total edge length = 0
total surface area = Unknown
surcell volume = Unknown
bulk = π3 · r3h
[!x,!y,!w] ⇒ Hyperboloids of two sheets
[!z] ⇒ sphere of radius (rnrh)




Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonediconeconinder
Torii: tigertorispherespheritorustorinderditorus


16. 1111
Tesseract
17. 31
Sphone
18. [21]1
Cylindrone
List of tapertopes