Pentasphere (EntityTopic, 15)

From Higher Dimensions Database

(Redirected from Tapertope 30)


Equations

  • Variables:
r ⇒ radius of the pentasphere
  • All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = π22 · r4
pentavolume = π28 · r5
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder


29. 1111
Duotrianglinder
30. 5
Pentasphere
31. 41
Glominder
List of tapertopes


8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
9a. IIIII
Penteract
9b. (IIIII)
Pentasphere
10a. (II)III
Tesserinder
10b. ((II)III)
Toratesserinder
List of toratopes


32. <IIIII>
Aeroteron
33. (IIIII)
Pentasphere
34. [(II)III]
Tesserinder
List of bracketopes